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from theoretical optimistic vision to practical and implementable reality.
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2. Nonstationary Spectrum sharing among coexisted mobile users (e.g., mobile robot, human
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' operators) and stationary users (e.g., fixed machinery, etc.).

Reconfigurable
Intelligent Surface

Technical Objectives

1. Formulate a hardware-driven cross-layer
optimization problem for RIS-enhanced wireless
network with hardware constraints

3. Develop distributed computational
efficient learning mechanism to reduce
the network risk during learning

3. Dynamic security requirement for control and automations units in distributed industrial
environment

Driving application Optimal, Secured, and Dynamic Wireless Network for Industrial 4.0
A key issue is how to balance optimality, security, time-efficiency in wireless network
management that can be used for industrial 4.0 even under dynamic and uncertain complex

4. Develop and experimentally characterize
various RIS implementation for wireless
networks.

2. Design data-enabled learning algorithm to solve
the formulated cross-layer optimization problem
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